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Survival requires that animals monitor environmental pH. 
Mammalian trigeminal neurons respond to pH ranging from 7.8 
to 10.0.1 Fish,2 shrimp,3 insects,4 and nematodes5 are also sensitive 
to environmental alkalinity. Secretion of the peptide hormone, 
gastrin, in the stomach is promoted by luminal alkalinization,6 
and capsaicin-sensitive afferent neurons seem to be involved in 
this process.7 However, little is known about how sensory neu-
rons detect it. C. elegans has proven extremely useful for dis-
secting the molecular bases of behavior. The nervous system of 
adult hermaphrodites comprises 302 neurons, including 12 pairs 
of amphid sensory neurons with ciliated dendrites.8 Among the 
sensory neurons, 3 pairs, ASH, ADL, and AWB, are responsible 
for sensing chemical repellents.9,10 Stimulation of these neurons 
triggers reverse locomotion. In particular, ASH is polymodal, 
and is required for nociception; mechanosensation, osmosensa-
tion, and chemosensation.11,12 TRPV ion channels, which con-
sist of OSM-9 and OCR-2 subunits, are expressed in ASH, and 
are involved in sensation of strongly alkaline pH.13 Mutations in 
ocr-2 reduce all the 3 forms of nociception.14 Both osmosensation 
and mechanosensation require ODR-3, a G-protein α-subunit, 
in ASH.15 These observations suggest that OSM-9 and OCR-2 
are not directly activated by mechanical stimuli,16 and that the 
signals detected by unknown sensor molecules may be transmit-
ted to OSM-9/OCR-2 channels through ODR-3.

Our previous study on the aversion of C. elegans to strongly 
alkaline pH showed that the nematode senses pH higher than 
10.5 as a noxious stimulus via ASH nociceptive sensory neurons, 
in which OSM-9/OCR-2 TRPV channels play an essential role.13 

Furthermore, it is known that ODR-3 appears to be generally 
important for the cellular response to most, if not all, repellents 
sensed by ASH.17 To determine whether any upstream factors 
regulate OSM-9/OCR-2 channels in strongly alkaline-pH sen-
sation, we analyzed behavior of C. elegans mutants deficient 
in G-protein α-subunits using a chemotaxis assay. Details of 
the experiments were described in our previous study13 on the 
aversion of C. elegans to strongly alkaline pH. ASH is known 
to express at least 10 G-protein α-subunits: EGL-30, GOA-
1, GPA-1, GPA-3, GPA-11, GPA-13, GPA-14, GPA-15, GSA-1, 
and ODR-3.15,18,19 Among mutants defective in these genes, 
only goa-1 mutants were unable to avoid strongly alkaline pH 
(Fig. 1A). All the other mutants, including odr-3, retreated from 
the noxious stimulus. However, Ca2+ transients in ASH of goa-1 
mutants were clearly observed at levels similar to those of wild-
type N2 (Fig. 1B), indicating that GOA-1 functions downstream 
of OSM-9/OCR-2 channels in intracellular signaling, perhaps in 
synaptic exocytosis, or in downstream neurons of ASH. Indeed, 
it has previously been shown that GOA-1 does not affect neu-
ronal depolarization in response to aversive stimuli such as high 
osmolality and quinine, but acts in ASH to modulate down-
stream transmission of intracellular signals.20

As described above, ODR-3 appears to be generally important 
for the cellular response to most, if not all, repellents sensed by 
ASH,17 and the OSM-9/OCR-2 TRPV channel appears to be 
the signal generation channel downstream of G-protein coupled 
receptors (GPCRs) and ODR-3/GPA-3 G-protein signaling.21 As 
shown in the present study, however, mutant animals deficient 
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the ability of animals to avoid strongly alkaline ph is critical for survival. however, the means by which they sense 
high ph has not been determined. We have previously found that the nematode Caenorhabditis elegans (C. elegans) 
avoids environmental ph above 10.5. Detection involves aSh nociceptive neurons as the major sensors. upon stimula-
tion, transient receptor potential vanilloid-type (trPV) ion channels encoded by osm-9 and ocr-2 play an essential role 
in Ca2+ entry into aSh. here we report that C. elegans mutants deficient in a G-protein α subunit, Goa-1, failed to avoid 
strongly alkaline ph with normal Ca2+ influx into aSh. these results suggest that Goa-1 regulates signal transmission 
downstream of Ca2+ influx through oSm-9/oCr-2 trPV channels in aSh.
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in odr-3 or gpa-3 showed similar avoidance indices to those of 
wild-type animals. This suggests that the OSM-9/OCR-2 chan-
nel may be a direct sensor molecule for strongly alkaline pH, 
and that the channel may not be regulated by upstream GPCRs. 
Indeed, ammonia and intracellular alkalinization directly acti-
vate TRPV1 in cultured cells, via a mechanism that involves a 
cytoplasmic histidine residue of the channel.22 Thus, the present 
study suggests that OSM-9/OCR-2 TRPV channels may serve as 

sensor molecules for strongly alkaline pH, and that GOA-1 may 
act to modulate downstream signaling of TRPV channels in ASH. 
However, these results do not rule out possibilities that other mol-
ecules than GPCRs may act as a sensor, or that the G-proteins may 
act redundantly as sensors for strongly alkaline pH.
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Figure 1. Behavior and imaging analyses of mutants deficient in a G protein α subunit. (A) avoidance indices of wild-type and mutant animals. assays 
were performed using petri dishes with 4 quadrants as described previously.13 Error bars indicate the SEm of 5 independent assays. **p < 0.01. (B) Ca2+ 
imaging of aSh in wild-type and goa-1 animals upon stimulation with ph 11.2. the red line represents the period of time during which animals were 
stimulated with ph 11.2 buffer. numbers of recordings are shown in parentheses, and light color shading denotes the SEm.


